KÜHLKONZEPTE RECHENZENTREN

Hannover, 29. September 2011

RECHENZENTREN, SERVERRÄUME FAKTEN AUS DEUTSCHLAND

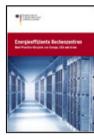
- Stromverbrauch hat sich von 2000 bis 2008 verdoppelt
- 50.000 Serverräume und Rechenzentren verbrauchen 10,1 TWh/a Strom
- Stromproduktion aus vier mittelgroßen Kohlekraftwerken
- knapp 6,4 Mio. t CO₂-Emission

BETRIEB UND KÜHLUNG STAND DER TECHNIK

- Virtualisierung der Server
- Optimierung der Architektur
 - Kaltgang
 - › Kaltgangeinhausung
- Optimierung der Kühlung
 - Hohe Zulufttemperatur
 - Indirekte Freikühlung

KÜHLUNG

VARIANTENVERGLEICH


	Indirekte Kühlung		Indirekte Kühlung mit Freikühlfunktion	
	Doppelboden / Kaltgang	Doppelboden / Einhausung	Doppelboden / Kaltgang	Doppelboden / Einhausung
Staudruck (∆) im Zuluftkanal (Doppelboden)	Bis zu 50 Pa	Mindestens 25 Pa	Bis zu 50 Pa	Mindestens 25 Pa
Volumenstrom	hoch	dosiert	hoch	dosiert
Luftführung	Vermischung der Kalt- mit der Warmluft	Kein Vermischen der Luft – keine Verschwendung von kalter Luft	Vermischung der Kalt- mit der Warmluft	Kein Vermischen der Luft – keine Verschwendung von kalter Luft
Luftansaugtemperatur	18° C	26° C	18° C	26° C
Temperatursteuerung	nicht möglich	möglich	nicht möglich	möglich
Jährliche Betriebs- stunden Verdichter	8760	8760	ca. 6760 (ab ca. 2°C Außenluft)	ca. 5760 (ab ca. 7°C Außenluft)
Leistungsbedarf bei Kühlung mit Verdichter	100 %	68 % von der Leistung ohne Einhausung (4 % / K ⁽¹⁾)	100 %	68 % von der Leistung ohne Einhausung (4 % / K ^[1])
Rel. Energieverbrauch	1	0,68	0,77[2]	0,45[2]

Eundesamt für Energiewirtschaft: Risikofreier Betrieb von klimatisierten EDV-Räumen bei 26° C Raumtemperatur, Bern 1995

^[2] Ohne Hilfsenergie für freie Kühlung

KÜHLUNG RECHENZENTREN EINSTIEGSLITERATUR

BMU-Broschüre: Energieeffiziente Rechenzentren

- Beispiele aus Europa, USA und Asien -

http://www.bmu.de/energieeffizienz/downloads/doc/45687.php

Band 2: Energieeffizienz im Rechenzentrum

Ein Leitfaden zur Planung, zur Modernisierung und zum Betrieb von Rechenzentren

http://www.bitkom.org/

ASHRAE TC 9.9: 2011 Thermal Guidelines for Data Processing Environments

- Expanded Data Center Classes and Usage Guidance -

http://tc99.ashraetcs.org/

